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The formula for manually computing RRR WRSK items, which is
documented in AFLCR 57-18 (April 1919), should read:

RRR qty = [BRR x BRC x QPA] + the greater of
[DR x QPA x FH] or

[DDR x QPA x TFH]

where

BRR = expected number of base level repairs (per
hundred flying hours),

BRC = flying hours (in hundreds of hours) occurring
during a base repair cycle,

QPA = number of units on an aircraft,

DR = total demand rate at a base for an item
(demand per 100 flying hours),

FH = flying hours (in hundreds of hours) in the
period of time in which the item's repair
facility is being set up,

DDR = expected number of failed items per 100 hours
that cannot be repaired at base level and
will be evacuated to the depot for repair,

TFH = total flying hours (in hundreds of hours) for
the support period.

This change does not affect the observations, findings, and conclusions
of the Report.
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PREFACE

For several years, Rand has investigated the ability of steady-

state models to provide appropriate resource management in dynamic war-

time environments, such as a NATO scenario. Of particular interest to

Project AIR FORCE has been the modeling of inventory systems for air-

craft parts when flying levels undergo large shifts. An effort has been

made to devise means for estimating capability and computing stock-level

requirements for such scenarios. Rand has also undertaken a rigorous

evaluation of the effects on capability and requirements of certain

widely used mathematical assumptions that have become wedded to classi-

cal inventory models, to see whether they are as valid as they are

mathematically convenient.

This report investigates the importance of capturing the effects of

changing levels of activity, presents a simple two-echelon dynamic model

that achieves that purpose, and evaluates the possible misallocation of

spares resulting from steady-state models. The report also examines the

effects of a questionable independence assumption common to many models

designed for capability assessment and requirements calculations. It

demonstrates that assumptions regarding the independence of the process

describing the number of units in base resupply and the depot repair

process have an insignificant effect on the calculations. The study

also demonstrates that the dynamic changes that would characterize a

NATO wartime environment are important and are not adequately captured

by steady-state models.

r t i

1141



-iv-

Several nonstationary models have been developed under Project AIR

FORCE to deal with dynamic activity changes. The models described in

this report represent one such effort. Readers interested in a dynamic

model--currently under development and test--which is designed to exam-

ine a fairly wide range of combat scenarios are referred to Rand Note

N-1482-AF, Model and Techniques for Recoverable Item Stockage When

Demand and the R eair Processes are Nonstationary, by R. J. Hillestad

and M. J. Carrillo. That Note describes a class of inventory models

(Dyna-METRIC, formerly known as RAMS) that provide the user with the

flexibility to compute support capability and requirements under wartime

scenarios with changing levels of flying activity and fluctuating capa-

bilities for repair.

The present study was perirmed for the Deputy Chief of Staff for

Logistics and Engineering (AF/LE), Hq USAF, under two projects in the

Project AIR FORCE Resource Management Program: "Concept Development and

Project Formulation" and "Strategies to Improve Sortie Production ir a

Dynamic Wartime Environment." This study should be useful to Air Force

analysts engaged in requirements determination and capability assess-

ments at the Air Force Logistics Command, in AF/LE, and at the major air

commands. More broadly, it should have utility for managers interested

in applying dynamic allocation models to many kinds of inventory and

stock-level problems.

. .. . . .. . . ... -7" .. . • 7 . ..
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SUM A RY

This report presents a two-echelon inventory model for recoverable

items when the demand process is nonstationary. The study is one pro-

duct of Project AIR FORCE research conducted over the past several years

that has questioned and investigated the ability of time-stationary

(steady-state) models to provide appropriate resourcing in dynamic war-

time environments. The report affirms the advisability of applying

steady-state models only, or mostly, to periods of relatively stable

flying activity--notably, peacetime flying programs. Dynamic models

appear more promising in periods of dynamic change, such as initial pro-

visioning and the early operational life of a weapon system and, more

important, during wartime. In a NATO scenario, for example, wide swings

in demand rates and repair rates are to be expected as flying levels

fluctuate. In such a scenario, steady-state models are likely to cause

significant misallocation of stock and miscalculation of the performance

to be expected from the repair and supply systems.

The two-echelon model described here, like any model, is a

mathematical simplification of the real world. In the course of demoli-

strating that steady-state models depart too far from realism, it was

deemed advisable to investigate the validity of an assumption that has

long been wedded to the mathematics of inventory systems and strongly

affects requirements calculations: the assumption that depot delay in

the resupply of serviceable parts to a base is independent of the number

of units in base resupply (on order, in transit, or in repair). To

evaluate the importance of this assumption, the outputs of two models
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were compared. One model assumes a dynamic demand process, but assumes

depot delay to be independent of the base resupply process. The other

model assumes the same dynamic demand process but numerically solves the

complex computational problem of evaluating the actual, dynamic, and

conditional distributions. The conclusion was that this independence

assumption has a negligible effect on performance measurement and stock-

age requirements, and that meticulous precision is therefore both

unnecessary and computationally intractable--probably the major

mathematical contribution of this report.

The inference, then, is that in many cases logisticians may freely

proceed with models that embody this assumption because it is mathemati-

cally convenient, even though it is untrue.

This study presents some simplified illustrations of its two-

echelon method for evaluating Air Force supply system performance when

the demand process for recoverable items is nonstationary, such as

occurs during wartime and initial provisioning. The examples illustrate

some of the pitfalls of using a stationary representation of a nonsta-

tionary demand process in these situations to determine stockage

requirements and to estimate expected system performance.

Two expressions are developed for the time-dependent probability

distribution of the number of units in resupply at each location in a

two-echelon resupply system. The resupply system is assumed to operate

as follows. A nonstationary process generates item failures at the

lower echelon locations, called "bases." The failed items are repaired

either at the base or at the upper echelon, called a "depot." After

issuing a unit to replace a failed item, the base inventory is replen-
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I. INTRODUCTION

Most probabilistic inventory models, including those that the Air

Force currently uses, assume that the underlying demand process is sta-

tionary. Over time, however, the Air Force environment is not station-

ary. Flying activity for each type of aircraft increases rapidly when

the aircraft is introduced into the active force and decreases as it is

phased out of service. Correspondingly, demand rates for spare parts

increase and then decrease. Nonetheless, stationary models are used to

determine requirements for each item at each location throughout the

aircraft's lifetime. Periodically, the values of daily demand rates,

unit costs, shipping and repair times, procurement lead times, and the

like, are adjusted to reflect current values, and new stock levels are

calculated. These models are valuable during periods of relatively

stable flying activity, such as those typical of peacetime. Whenever

flying activity changes dramatically, however, the models can inaccu-

rately estimate both stockage requirements and supply system perfor-

mance. For example, when flying activity surges at the beginning of a

war, these models provide little information concerning the logistics

system's ability to support the increased flying activity. At certain

points in time, stationary models either overstate or understate the

capability to support a projected sortie rate.

This report describes a computationally tractable method that can

be used to analyze the time-dependent behavior of a two-echelon inven-

tory system for recoverable items (items amenable to repair when they

fail). The system consists of a set of n locations, called bases, at
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which flying occurs, and a centralized repair and inventory control

point, called a depot. We assume the system operates in the following

fashion. Each primary demand originates at one of the n bases. Upon

failure of an item at a base, it is either repaired at that base or is

sent to the depot for repair. If the failed item is repaired at the

base, it is immediately entered into the base's maintenance system.

Once the item has been repaired, it is sent to the base's supply organi-

zation and becomes available for issue. If the failed item is sent to

the depot, the base immediately orders a replacement from the depot.

The depot then immediately sends a replacement unit to the base, pro-

vided a serviceable spare unit is available; if it is not, the depot

dispatches one to the base as soon as it becomes available. Thus, re-

supply of a base's supply organization comes from the base's mnaintenance

organization when a failed item is repaired at a base and from the depot

when the failed item is repaired there. (The possible flow of items in

the system is displayed in Fig. 1.) In either case the organization perform-

ing the repair exchanges a serviceable item for a broken one as soon as pos-

BS 1
MAINTENANCE a MAINTENANCE 

Fig. 1 -Possible item flow in the maintenance and supply system1
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sible. That is, the system follows an (S-1, S) continuous review pol-

icy, which is justified since most recoverable items are expensive and

have low demand rates.

In subsequent sections we will derive, under different sets of

assumptions, the time-dependent probability distribution of the number

of units of a particular item in resupply at each location. The number

of units in resupply at a base is the sum of those in base maintenance

and those on order from the depot; the sum of those in depot resupply is

the number of units in depot repair plus those en route to the depot

from the bases. Once this distribution is known, time-dependent perfor-

mance measures can be routinely calculated, such as ready rate, fill

rate, Not Mission Capable--Supply (NMCS) rate, and the expected number

of outstanding backorders at a point in time, t. It is also possible to

find the minimum stock leveltli required at a location at time t to

achieve a specified level of performance. Section II presents a simpli-

fied example of how this can be done.

Section II also demonstrates the effect of changing maintenance and

transportation times, and illustrates the importance of using a nonsta-

tionary description of the demand process rather than a stationary

approximation. Section II contains an example showing how the time-

dependent demand process influences the number in resupply and the stock

level needed to provide a given level of support.

[1] At a base, the stock level measures on-hand serviceable inven-
tory, plus items in repair at the base, plus items ordered from the
depot that have not yet arrived, minus items backordered at the base.
At the depot, the stock level measures the on-hand serviceable invento-
ry, plus units in repair at the depot, plus units en route from the
bases to the depot requiring depot repair, minus backordered items at

the depot.
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In Sec. III we assume that the demand process is a nonstationary

Poisson process. Based on this and several other assumptions, we

present an approximation to the time-dependent probability distribution,

a nonstationary Poisson distribution, for the number of units in resup-

ply at each location at time t. The approximation is similar to the one

used by Sherbrooke (1] in his analysis of the same system when the

demand process is a stationary Poisson process. In Sec. IV we develop,

under a different set of assumptions, an alternative but exact expres-

sion for the same distribution. There we assume that the demand process

is a discrete process. Specifically, we-assume that a known number of

sorties is flown each day, and the probability of an item failing on any

sortie is p. The remaining assumptions made for the derivation of the

distributions in these two sections are essentially the same.

As will be seen, the continuous time approximation developed in

Sec. III is easy to evaluate computationally, whereas the distribution

developed in Sec. IV is, for practical situations, intractable. Furth-

ermore, as discussed in Sec. V, the quality of the approximating distri-

bution is quite good when the chance or a backorder occurring at the

depot is small (there is some depot safety stock) and/or the proportion

of total failures requiring depot repair is small. In fact, the quality

of the approximation is as good as the one used by Sherbrooke I]I to

approximate the same distribution when the demand process is stationary.

Section VI briefly summarizes the report and discusses applications

and policy implications.
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II. SOME ILLUSTRATIONS

We now illustrate the importance of taking a time-dependent view of

the demand process. These examples consider the simplified case of a

single base operating without depot support. The two-echelon calcula-

tions developed later are not used.

Suppose that an item has a fixed daily demand rate of .8 units, and

a fixed base repair time of 5 days, and has all failures repaired at the

base. A surge occurs in flying activity, after which the base repair

time remains at 5 days and the base continues to perform all repairs;

however, the demand rate following the increase in flying has the form

- 3t
X(t) = te- where a = 3.16 and B = .1. (Then the expected number of

demands over the first 30 days following the time at which flying

activity initially increased equals 30.)

The third column in Table I displays the value of

k
i k = X(t)dt,

k-5

the expected number of items in resupply at the end of day k. Suppose,

for example, the stock level on each day is established such that the

probability of having one or more backorders at the base is no greater

than .2, assuming the demand process is a nonstationary Poisson process.

(This policy is the one the Air Force uses to compute the stock level

for spare aircraft engines, except that the demand process is assumed to

be a stationary Poisson process [2,3].) For our example, the required

-7.
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stock levels are given in the last column of Table 1. The stock level

required on day k to meet this performance goal is the smallest nonnega-

tive integer, s, such that

s P -kp (k) n

n! > .8.

n=0

Observe that the peak requirement of 15 units occurs on day 5 and the

minimum requirement for the 30-day period, 2 units, occurs on day 30.

Furthermore, observe that the stock needed to achieve the specified

level of service changes frequently.

Recall that the expected demand over the 30-day period is 30 units.

If a stationary approximation to the demand process over the 30-day hor-

izon is used and the total expected demand is 30 units, then the

Table 1
EXPECTED NUMBPR OF UNITS IN RESUPPLY AND

REQUIRED STOCK LEVEL ON EACH DAY:
NONSTATIONARY DEMAND MODEL

Stock Level
Expected Required to
Number Achieve 0.8

Expected of Units Probability
Day Demand in Resupply of No Backorders

1 3.0 6.2 8
2 2.7 8.1 10
3 2.5 9.8 12
4 2.2 11.2 14
5 2.0 12.4 15
6 1.8 11.2 14
7 1.7 10.2 13
8 1.5 9.2 12
9 1.4 8.3 11

10 1.2 7.5 10
15 .7 4.6 6
20 .5 2.8 4
25 .3 1.7 3
30 .2 1.0 2

01i
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expected daily demand rate is 1 unit.[l] The expected number of units in

resupply on each day under this assumption is given in column two of

Table 2. Assuming the stock level is set so that the probability of

having one or more backorders is no larger than .2 on any day, the

corresponding minimum and maximum inventory requirements are estimated

to be 6 units and 7 units, respectively. Thus the actual maximum

requirement would be understated by 8 units. The level of support pro-

vided using the stationary demand model for determining stock levels

changes substantially over the 30-day horizon. Table 3 gives the proba-

bility of having one or more backorders on each day. As indicated, sup-

ply support is inadequate during the early portion of the period and is

much better than planned at the end of the period.

Reducing the resupply time is one way to reduce the requirement for

spare stock or to increase the probability of satisfying all demands

with a given stock level. To illustrate how a reduction in resupply

Table 2
EXPECTED NUMBER OF UNITS IN RESUPPLY AND

THE STOCK LEVEL ON EACH DAY:
STATIONARY DEMAND MODEL

Stock Level
Expected Required to
Number Achieve 0.8

Expected of Units Probability
Day Demand in Resupply of No Backorders

1 1.0 4.2 6
2 1.0 4.4 6
3 1.0 4.6 6
4 1.0 4.8 7
5 1.0 5.0 7

[I1 The Air Force uses this method for computing demand rates dur-
ing wartime--for example, to compute spare engine requirements [2,31.
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Table 3

PROBABILITY OF HAVING ONE OR MORE
BACKORDERS WHEN USING THE STOCK

LEVELS COMPUTED USING THE STATIONARY
DEMAND MODEL IN THE DYNAMIC ENVIRONMENT

Day Probability Day Probability

1 .428 8 .699
2 .699 9 .588
3 .857 10 .475
4 .869 15 .095
5 .927 20 .008
6 .869 25 .000
7 .797 30 .000

time affects performance, assume the base repair time is reduced to 3

days during peacetime and the first 10 days of the surge, and is 5 days

thereafter. Table 4 displays the expected number of units in resupply

Table 4

EXPECTED NUMBER OF UNITS IN RESUPPLY AND
THE REQUIRED STOCK LEVEL ON EACH DAY:

ALTERED BASE REPAIR TIME

Stock Level
Required to
Achieve 0.8

Expected Number of Probability
Day Units in Resupply of No Backorders

1 4.6 6
2 6.5 9
3 8.2 11
4 7.4 10
5 6.7 9
6 6.0 8
7 5.4 7
8 5.0 7
9 4.5 6

10 4.1 6
15 4.6 6
20 2.8 4

NOTE: Base repair time 3 days through day 10,
and 5 days thereafter.



-9-

and the minimum stock level required to have at least a .3 probability

of having no backorders on each day. Thus, by reducing the base repair

time, the peak requirement for stock is reduced by slightly over 25 per-

cent. We also note that to reduce the peak requirement, we must reduce

the repair time for several days prior to the peak, not merely on the

day the peak occurs.

The type of analysis used in this simplified illustration can be

employed to investigate the impact of changing repair and transportation

times on various system performance measures. The effect of time lags

between increases (or decreases) in repair time or transportation times

and the changes in performance (and the magnitude of the changes) can be

examined using nonstationary models described in the following sections.

The examples discussed in this section are simplistic by design.

They do not account for interactions between the depot and the bases.

If one is content with this simplification, then it is easy to implement

methods for finding stock levels for each location when the demand pro-

cess is changing over time. The analysis becomes far more complex in

the multiechelon case than in the single-location situation, since the

straightforward technique employed in this section cannot be used to

determine impact of having a given depot stock level on the expected

number of units in base resupply at any point in time and, ultimately,

on the time-dependent behavior of base supply performance. These com-

plications and methods for dealing with them are discussed in the next

two sections.
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III. A CONTINUOUS TIME MODEL

We begin this section by stating and discussing the major assump-

tions underlying the continuous and discrete time models developed here

and in Sec. IV. We then derive the time-dependent probability distribu-

tion for the number of units in depot resupply and the approximate non-

stationary probability distribution of the number of units in base resup-

ply for the continuous demand process model.

BASIC ASSUMPTIONS

For the model developed in this section, we assume that the demand

process at each base in the system is a stationary Poisson process

through time to , following which it becomes a nonstationary Poisson pro-

cess. Thus, in this model the demand process is viewed as a continuous

process. When t , to, the demand rate at base j is assumed to be a con-

stant y. units per day. Following to, we express the instantaneous

demand rate at base j as X.(t) which, we assume, does not depend on the3

number of units in repair. Thus we assume that the flying schedule is

met regardless of inventory considerations. To simplify our notation,

we assume, without loss of generality, that to = 0.

We also assume that

1. Lateral resupply among bases is not permitted; however, stock

levels can be changed over time at each location.

2. All failed parts are repaired.

3. Demand processes are independent from base to base.



4. All excess demand is backordered.

5. The echelon at which repair is performed depends only on the

complexity of the repair. The probability of a failed unit at

base j being repaired there is r.

6. There is no waiting or batching of items before starting repair

on an item.

7. The repair time at base j is a constant Bj days, and the depot

repair cycle time, which includes the transportation time to

the depot from a base, is a constant D days.

8. The transportation time from the depot to base j is a constant

A days. This transportation time includes the time it taires

to place an order. Hence A1 is the order and ship time for

base j.

Before beginning the analysis, some clarifying comments concerning those

assumptions will be helpful.

Assumption 1 is that lateral resupply is not allowed. That is,

unplanned shipments between two bases to eliminate a temporary shortage

are not allowed. The models developed here and in Sec. IV are designed

to study the implic-ations of certain supply, maintenance, transporta-

tion, and deployment policies in a dynamic environment. Stock levels

are assumed to be specified in advance for each location at each point

in time. Although these stock levels can be altered over time to

account for planned changes in flying activity, real-time reallocation

of assets among bases is not allowed. Consequently, no attempt is made

to take advantage of the opportunities for improving system performance

that might arise. The models are by design conservative; that is,
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projected shortages could possibly be reduced by reallocating inventory

in real time when one location has a shortage while another has a con-

siderable amount of serviceable stock available. Other models can be

used to estimate the potential of lateral resupply as a means for

improving supply effectiveness (e.g., see Ref. 4).

We have also assumed that repair and transportation times are con-

stant. This assumption is unnecessary for the derivation given in this

section. Furthermore, these distributions can be time-dependent. These

extensions can be incorporated without significantly altering the

derivation we will give.

The derivation given in Sec. IV does require the repair and tran-

sportation times to be constant. A discrete time model can also be

derived using the same type of argument given in Sec. IV for the case

where the repair times and transportation times are constant but time-

dependent. However, the derivation of the distribution for the number

of units in resupply for the discrete time model is extremely complex

when repair and transportation times are assumed to be independent ran-

dom variables whose probability distributions have finite means.

Because the derivation is so long and complex, and the results are of

little practical value (because of the excessive computation required to

evaluate the probability distributions), we will not present the deriva-

tion.

The last assumption we will discuss in detail is the infinite

server assumption--k sumption 6. Clearly, in any practical situation

the number of available servers is always finite. However, empirical

evidence suggests that whenever the utilization rate is less than .7,
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except for short periods of time, the infinite server approximation is

reasonable [5]. This experimental evidence also indicates that the

difference in the expected number of shortages at any point in time

between the finite and infinite server models is insignificant when the

utilization rate is less than or equal to .5. Consequently, the infin-

ite server assumption appears to be reasonable unless the utilization

rate is greater than .7 over an extended period of time.

Additional discussion of the assumptions is given in Ref. 1.

DEPOT ANALYSIS

We begin the analysis by deriing the probability distribution for

the number of units in resupply at the depot at any time t > 0. Let

N(t) represent the number of demands placed on the depot by all bases in

(O,tJ, and let m(t) represent the expected number of demands placed on

the depot during (O,t]; that is,

n

E[N(t)] = m(t) = _ (1-rj'( d-r.

j=l 0

Next, let M(t) represent the number of parts in depot repair at time t,

let Mitt) represent the number of parts in depot repair at time t that

were in repair at time 0, and let M2(t) denote the number of parts in

depot repair at time t that enter the depot repair process following

time 0. Thus a(t) = Ml t) + t > 0. We find the probability dis-

tie . hs ~t =I I(1 ,1 2(t),t>0.Wfidhepoaltyis

tribution for M(t) by determining separately the distributions of M (t)

and M? (t) since both terms are independent.
2
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Since the demand process is assumed to be a stationary Poisson pro-

cess at each base through time 0, the depot demand process prior to time

0 is also a stationary Poisson process having rate

n

'0 =  
(1-r ) Y j.

j=l

This is the case because, if a Poisson process with rate X is observed

and each event is recorded with probability p, then the recorded process

is a Poisson process with rate pX [4]. Consequently, M(t) has a Pois-

son distribution with mean y ' (D-t), 0 < t < D, and M1 (t) = 0 with

probability 1 when t > D.

Next, observe that M2 (t) measures the number of units that fail at

bases (that require depot repair) during (0, t], when 0 < t < D, and

(t-D, t], when t > D. But the failure processes at the bases are

independent, nonstationary Poisson processes. Consequently, M 2(t) has a

nonstationary Poisson distribution, since the distribution of the sum of

independent random variables each having a nonstationary Poisson distri-

bution is again a nonstationary Poisson distribution. The mean of the

distribution is m(t), if t < D, and m(t) - m(t-D), if t > D.

By combining the above results, we see that M(t) is the sum of two

independent Poisson processes (one stationary and the other nonstation-

ary) when 0 < t < D. Consequently, when 0 < t ! D, M(t) is nonstation-

ary Poisson distributed with expectation Y0 * (D-t) + m(t). When t > D,

M(t) M2 (t) and hence M(t) again has a nonstationary Poisson distribu-

tion. In this case the mean is m(t) - m(t-D).

5-I
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(We note that a similar result can be obtained when D is not con-

stant, but is a random variable whose distribution has a finite mean, D.

In that case, M(t) also has a nonstationary Poisson distribution; how-

ever, its mean is not calculated in the same manner as when D is con-

stant.)

-B.t
As an example, suppose A.(t) = a.e t > 0, a model often usedJ J ,t>Oamd otnue

to reflect flying activity during wartime. For this model,

mn) n(1 eJ

m(t) (l-rj cc e dx - (l-r.) i ( )/BjjJ
j=1 0 j=1

and

n -B.t

(1-r.) o.(l-e J )/B + yo(D-t), t < DJ J J 0 _

E[M(t)] = Bt B.D

(1-r) aj e ' (e -l)/Sj, t > D.

j=l

Ultimately, we are interested in determining the probability dis-

tribution for the number of units in resupply at each base at time t.

As mentioned earlier, we will approximate this distribution with a non-

stationary Poisson distribution. As we will see, this distribution's

mean includes the expected delay experienced by a unit on order from the

depot by a base at time t due to the unavailability of serviceable depot

stock. Since an exact expression for this expected delay is unknown, we

will approximate it using the well-known queueing formula L = X 0 W as

follows:

Expected delay experienced Expected depotExpeteddela exeriecedbackorders at time t

by an item on order by a bcodr ttm
bae at ie on Average depot arrival rate during
base at time t time t - D through time t
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Let sot represent the depot stock level at time t, and B (t; s o) the

expected number of backorders outstanding at the depot at time t. Then

the (approximate) expected depot delay at time t is

t-D

where

n

()= (l-r) X. (r)

j=l

is the depot arrival rate at time T. Furthermore,

E (x-sot ) ey ) [y0 (D-t)+m(t)] X/x!, 0 < t <D,

x>s 0 t

B 0(t; s ot)=

S(x-s 0 t) e-[m(t)m(tD)[m(t) - m(t-D)]x/x!, t > D.

X>Sot

Observe that, under our assumptions, the expression for expected delay

would be exact if the demand process were stationary.

BASE ANALYSIS

We now derive an approximate probability distribution for the

number of units in resupply for a base at time t > 0. Recall that the

number of units in resupply at time t at a base is the sum of the items

in base repair at time t and those items on order from the depot by the

base at time t. The number of units in base repair at time t and the

...... n immrrl ...... ... ......... • --*- .., ... .. ..- . -,- . ... ........ . ... . . .



number of units on order from the depot at time t are independent random

variables, since the random split of a Poisson process yields two

independent Poisson processes. Thus, we can find the distribution of

the number of units in resupply at a base by separately determining the

distribution of the number of units in base repair and the distribution

of the number of units on order from the depot by the base.

Let us first find the distribution of the number of units in base

repair at base j at time t. Let X.(t) represent this quantity. Using

the same argument as given for the depot, X.(t) is found to have a nons-

tationary Poisson distribution. If 0 < t < B., the mean of this distri-

bution is

1

r YJ (Bj-t) + mW(t),

where, as before, Y. is the demand rate at base j at time t < 0, and

1

m.(t) = r_ f .(T) dT.

0

If t > B., then the distribution's mean is m.(t) - m.(t-B.).-J J J 2!

Next, we approximate the probability distribution for the number of

units on order from the depot by base j at time t with a nonstationary

Poisson distribution. (The reason for selecting the nonstationary Pois-

son distribution as the approximating distribution will be discussed

later on.) Consequently, all that needs to be done is to find an expres-

sion for the mean of the distribution at time t.

If 0 < t , the mean of the distribution of the number of units

on order from the depot at time t by base j is the sum of (a) the
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expected number of demands during (0, tJ at base j requiring depot

repair (i.e.,

m.(t) = (1-r X (r) d-)
J

(b) the expected number of demands during (t-Aj, 0] at base j requiring

depot repair (i.e., Yj • (l-r j) • (Aj-t)), and (c) the expected number

of units backordered at the depot at time t - A. that correspond to ord-

ers placed by base j (namely, (1-r.)" y- expected backorders at the

depot /y0

= (l-r.) • y • (x-s0 ) p(x1YoD)/y 0,

where s0 is the depot stock level prior to time 0 and

00X

p~x~yD)-=0 D (yoD) x

is the probability that x units are in depot resupply). Thus, when 0 <

t < A , the expected number of units on order from the depot by base j

that have not arrived by time t is

m 2t) + y. (1-r) (A.-t + ( (X1YoD))/y2(x-s 0 ) P •yD)/0

x>s 0

In a similar manner, we may find (approximately) the expected

number of units on order from the depot by base j when t > A . This
e

expected value is the sum of (a) the expected number of demands during
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the interval (t-A , ti at base j requiring depot repair (m2(t) - m 2

JJ

(t-Aj)) and (b) the expected number of base j orders backordered at the

depot at time t-A . This latter quantity can be determined as follows.

Recall that

f(t-A s dD T)

3

represents (approximately) the average delay experienced by a unit on

order at the depot at time t-A.. Multiplying this quantity by the aver-

JJage arrival rate from base j during (t-D-A, t-D], we obtain an estimate

of the number of units ordered from the depot by base j prior to t-A.

but not received by time t. Then, combining these expressions, we have

A ( 'r)d r

t-D-A.

units on order from the depot by base j at time t > A If the value of

s0, t-A is somewhat larger than the expected number in the depot repairJJ

cycle at time t-A , so that

B 0(t-Aj; s0,tA)~ 0,

JI

-- -- i_,,',' .1 I-A''--=-..... , - .. ...... : ..... .. .j
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or if r* approaches 1, then the expected number of units being delayed

at the depot for delivery to base j is approximately equal to 0. In

either case, as we show in Sec. V, the nonstationary Poisson distribu-

tion is an excellent approximation to the distribution of the number of

units on order from the depot by base j.

We have shown that the time-dependent distribution for the number

of units in base repair is a nonstationary Poisson distribution, and

that the time-dependent distribution for the number of units on order

from the depot by a base can be approximated by a nonstationary Poisson

distribution. These two distributions are independent, since the number

of demands for depot resupply and base repair during any interval of

time are independent random variables. (This is the case since the ran-

dom split of a nonstationary Poisson process--the failure process at the

base--res-lts in these two independent nonstationary processes.) The

number of units in resupply at the base is therefere the convolution of

the random variables for the number of units in base repair and the

number of units on order from the depot by the base. Consequently, the

time-dependent distribution of the number of units in resupply at a base

can be approximated by a nonstationdry Poisson distribution.
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IV. A DISCRETE-TIME, SORTIE-ORIENTED MODFL

We now develop, under a somewhat different set of assumptions, an

exact, rather than an approximate, distribution for the number of units

in resupply at time t at any location. The approach taken here differs

from the one used in Sec. III. The major difference is that we now con-

sider time to be divided into discrete increments, for example, into

days. On each day, the number of demands for spare stock for an item at

a base depends on the known number of sorties flown that day. We assume

the probability is p that an item will fail during a sortie. This

assumption implies that the probability that an item fails on a sortie

does not depend on either the base from which the sortie is flown or the

type of sortie flown. (This assumption is made only to simplify the

analysis. It can be dropped and the method we will use can be modified

to develop the desired probability distributions; however, the computa-

tional burden increases substantially.) We also assume that each air-

craft contains only one unit of the item. Our analysis can easily be

extended to systems containing more than one unit per aircraft. We con-

tinue to make Assumptions 1 to 8 listed in Sec. III. In addition, we

assume that the probability of base repair is the same at all bases,

i.e., rj = r, although this assumption is not crucial and is made only

to simplify the presentation. Lastly, we assume that A. > Bj; that is,

the depot-to-base transportation time is at least as large as the base

repair time. This assumption is satisfied in most instances in the Air

Force. For example, the base repair time for F-15 avionics items is

normally only several days, whereas the depot-to-base order time plus

I
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transportation time is usually 10 or more days. Again, this assumption

could be removed without changing the method used to compute the desired

distributions.

The number of units in resupply on day k at base j is the number of

units ordered from the depot by base j by day k-A that have not arrivedJ
at base j by day k, denoted by W j(k), plus all units ordered by base j

from the depot during days k-A. + 1 through k-B. , denoted by W (k),

plus all demands occurring at base j on days k-B. + 1 through k, denoted

by Wj3(k). Since the random variables W. 1 (k), W.j2(k), and W. 3(k)meas-

ure the number of units in resupply that are due to demands occurring in

non-overlapping intervals of time (see Fig. 2), and since the demand on

any day is independent of that on any other day (we assume that aircraft

are available to fly the scheduled sorties), these random variables are

independent. Thus we can find the distribution for the number of units

in resupply at base j on day k by determining separately the distribu-

tions of W (k), W (k), and W (k) and taking the convolution of these
ji j2 j3

three distributions.

_ Base repair .4
time

Day (k.-A 1 -D+1) Day (k-Aji+1) Day (k-Bj+1) Day k

[-s--- Depot repair cycle time - 4 - Depot-to-base
transportation

time

Fig. 2-Time sequence at base I

Before we derive these distributions, let us introduce some new

nomenclature and make some observations. Let
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X kj = the number of sorties flown on day k at base j,

X ko = the number of sorties flown on day k at all other bases,

X k = X kj+ Xko = the total sorties flown on day k,

Y = the number of failures at base j on day k requiring depot repair,kO

y = the number of failures at all other bases on day k requiring
kj depot repair,

Y Yk = Okj + k0 and

q = (1-r)p.

Since there are Xk sorties flown on day k, each of which generates

a failure requiring depot repair with probability q, Yk has a binomial

distribution, that is,

Y qU I k- , y=O, ... , Xk ,

P(Yk = y ) =

0 otherwise

We assume that demands resulting from sorties flown on day k are

entered into the depot or base repair cycle at the end of day k. All

repairs are assumed to be completed at the end of a day.

Consequently, the probability that y units are in the depot repair

cycle just after the end of day k is

X qY(l-q) Xi - ) ,y=0, 1, .... Xi,

P( =i Y)

i
0 , otherwise.
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where the index of summation i ranges from k-D+l through k.

Let us first derive P(WjI(k) = w). Observe that any unit on order

from the depot by base j prior to day k-Aj-D + 1 must have been satis-

fied by the end of day k, assuming that a first-come first-serve policy

is followed. Consequently, Wjl(k) measures the number of depot orders

placed by base j on days k-Aj-D + 1 through k-Aj that are not satisfied

by day k. Let so represent the depot stock level on day k-A. We will

find P(WjI(k) = w) by determining

P(W j(k) = w Yi =so + y),

where the index of summation, i, ranges from i = k-A. -D+l through i =

k-A..

Next, observe that if some orders placed on the depot by base j on

days k-A -D+l through k-A, are not satisfied by day k, then the numberj J

of failures on days k-A.-D+1 through k-A, at all bases that requireJ J

depot repair must exceed the depot stock available to meet those

demands. That is, if w > 1, then

k-A.
Y Yi > SO0

i=k-D-A .+I

Consequently, there exists a first day among the days k-D-A +1 through

k-A when the total depot demand over this period exceeds so . Let L be

the random variable denoting this day. By conditioning on L we see that
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k-A.
j

P (W jI1(k) = wl Yi = so + y )  E P P(W j Wk

Z=k-D-A.+l
I

= wIL=Z; Y = s0 + y)" P(L=Z = S0 + Y).

i i

However, L = I if and only if the total demand on days k-D-A.+1 throughJ

1-1 does not exceed SO and the demand on day t is sufficient to raise

the total demand for days k-D-A + 1 through k above sO. Thusj

10P(W jik M wl Yi = so + y )

k-A. sO  Xz

Z=k-A.-D+I a--max(0,s 0-X) e=s0 -a+1
J

k-A.

-Ez Ej

i=k-A.-D+I i=k-A .-D+1

k-A
I-i

P(~ Y1=a; Y,=e I .E Yi=s0 +y
i=k-A -D+1 i=k-A. -D+IJ J

Also, since the probability of a failure on a sortie is independent of

the number of failures occurring on all other sorties, we see that

-- -
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k-A.( + Y1=a; Y,=e I Y i=s0+y
i=k-A .- D+I i=k-A . -D+1

k-A.

YP =a; Y i=e; 0Y+s 0 +y-(a+e)

i=k-A..-D+I
J

( i / 0+Y ()
(=k-A.D+l >: X !i )

w -A ma f

E Xi

cases where Z = k-A.-D+I and Z = k-A.

Observe that if Wjl(k) = w, then some of these units could be

demanded from the depot by base j on day 1, where, as before, I is the

first day among the days k-A j-D+l through k-A when the total depot

demand exceeds so, and the remainder of these units are demanded at base

j during days Z+i through k-A.. Let Zj, represent the number of units

ordered from the depot by base j on day t that are unsatisfied by day k.

Note that
k-A.

Yij
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measures the number of -nits that fail at base jon days E-4l through k-A

that require depot repair. Then

i=k-A -D+l '~1=a ~;i=k-A -D+lY. O)

min(e,w) k-A.

E P (7f j Y..
f-O

'-1 k-A.

W kA.D+ Y.=a;Y, =e; Yi=S+Y)
i~k A-D+Ii=k-A.-D+l

min(e,w) -1k-A.

- ZPI= Y \-a;,=e, Y =s +
f= i=k-A.-D+l i=k-A.-D+l

Ykw- k-A

___w- Yia;Y,,=e; Y.=s +V)

1 -A-D+l i=k-A,-D+l

Note that Zzdepends only on the number of failures at all bases

requiring depot repair on days k-A .- D+l through E, and that

k-A.

depends only on the number of failures requiring depot repair on days

E+l through day k-A.., The latter implies that

k-Al k-A.

!i~a;Y,=e

il- LI +
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k-A. k-A.

ii j

~ W- f Ys +y-( /(wf

S () +Y- (a)I

( k-Ak-A

an th f mea mp=e e that)+

i~k-A.-D~l ik-A.-+

rnin(X ,e,w) .aYeY PY=' )

07 i~k-A.D+l =e

-mln(X9. e~w)( ~ __ai f) (X,,-)

By combining the above results we car determine
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k-A.

P(Wj(k) = w Yi = S + Y).

i=k-A -D+1
3

Since, under our assumptions,

k-A.

Yi

i=k-A -D+I
3

has a binomial distribution as noted previously, we can evaluate P(Wjl

(k) = w) using

k-A, k-AJ j

P(Wi(k) w) j P(WjI(k) w Yi= s0+Y) p( Yi=s0y), w ,

v>w i=k-A.-D+l i=k-A.-D+1
3 3

and

P(WjI (k) = 0) 1 - P(Wji(k) = w).

W=1

Next, let us establish the probability distributions for the random

variables W (k) (the number of failures at base j during days k-A.+l
j2

through k-B. that require depot repair) and Wj3(k) (the number of
3

failures at base j on days k-B.+1 through k). Since the probability3

that a failure will occur on a sortie does not depend on the number of

failures occurring on other sorties, W j2(k) and Wj (k) are independent

arid binomially distributed. In particilar, W j2(k) has a binomial dis-

tribution with parameters

k-B3.

×iij

i =k-Aj +.l
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and q, and W 3 (k) has a binomial distribution with parameters

k

EXij

i=k-B .+1
J

and p.

Recall that the number of units in resupply on day k at base J, W j

(k), is the sum of Wjl(k), Wj2 (k), and Wj3 (k). We also have established

that these three random variables are independent. Since we have shown

how to determine the distribution for Wjl(k), Wj2 (k), and Wj 3(k), the

distribution for W.(k) is the convolution of these three distributions.

Lt
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V. A COMPARISON OF THE EXACT AND APPROXIMATE MODELS

In previous sections we developed two representations of the proba-

bility distribution of the number of units in resupply at each location

based on different assumptions concerning the nature of the demand pro-

cess. Furthermore, the probability distribution obtained in Sec. III is

only an approximation to the actual distribution of the number of units

in resupply at a base.

To test the accuracy of the approximation, we compared distribu-

tions obtained using this approximation with those calculated using the

exact expression developed in Sec. IV. A sample of eight avionics items

found on the F-15 weapon system was selected to make the comparison.

These items were chosen to represent various combinations of an item's

failure rate and its value of r, the probability that it is repaired at

a base. Items were chosen that have low, medium, and high failure

rates, and values of r ranging from .05 to .95. (The experiment was

essentially a 3- experiment in which all combinations of failure rates

(low, medium, high) and r values (low, medium, high) were represented.)

The demand models were selected so that a substantial degree of

nonstationarity was present. The models reflected a sharp increase in

flying activity at each base following a long period during which flying

activity was constant. After the initial surge, flying activity was

assumed to decrease exponentially at each base so that 30 days later it

had returned to approximately the stationary value that preceded the

surge. (See Fig. 3 for an illustration.)
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Surge day =0 Day following surge

Fig. 3--Daily flying activity at the base for which the
exact and approximate distributions were calculated

The base repair times, B., order and ship times, A. , and depot
J J

repair cycle times, D, were 4 days, 10 days, and 40 days for each item,

respectively.

Using these data, we compared the approximate and exact distribu-

tions for days 5, 15, and 30 following the surge in flying. First, we

assumed the depot had no safety stock, that is, we assumed the depot

stock was approximately equal to the expected number of units in the

depot repair cycle. To be precise, we set the depot stock level for

each day so that it was equal to the smallest integer that was greater

than or equal to the expected number of units in the depot repair cycle

at that time. This meets current Air Force policy, which requires that

the depot stock level should be at least as large as the expected number

of units in the depot repair cycle [6]. This comparison is a "worst
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case" type of comparison; if the depot stock is larger than this lower

bound, the quality of the approximation must improve. This fact is sub-

sequently illustrated. Furthermore, note that as the depot stock level

approaches infinity,

P(W I(k) 0 ) I
ji

Consequently, the number of units in resupply at base j on day k when S
0

= - is W (k) = W (k). Recall that W (k) and W (k) are independent
j 2 3 j2 j3

random variables and each has a binomial distribution. If the length of

the time period used in the exact model approaches zero, then each of

these binomial distributions approaches a Poisson distribution. Thus if

S 0 - and the length of the time period in the exact model approaches
0

zero, the exact distribution approaches a Poisson distribution (since

the sum of two independent Poisson random variables is a Poisson random

variable) and the exact and approximate distributions become identical.

In the experiment we also assumed that the flying activity at the

base for which the exact and approximate distributions were explicitly

calculated was one-half the system's total. This again is a worst-case

type of comparison. By having a large fraction of activity concentrated

at a single base, we increase the effect that the depot stock level has

on the distribution of the number of units in resupply at that base. If

the flying activity at a base is small in comparison with the total sys-

tem flying activity, then depot backorders have a minimal effect on the

expected number of units in resupply at the base. The effect of depot

delay in satisfying base orders on the quality of the approximation

increases as the fraction of depot demands attributable to the base
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increases. Thus, the experiment was designed to test the quality of the

approximating distribution under reasonably extreme conditions.

The results of the experiment showed that in all cases the nonsta-

tionary Poisson distribution is an excellent approximation to the exact

distribution of the number of units in resupply at a base, even when the

depct stock level is at its lower bound. The distributions generally

agree to two decimal places. Table 5 compares the approximate and exact

distributions for three items on days 5, 15, and 30, for various values

of r and p. The quality of the approximation also appeared to be

affected by the items' failure rate for similar values of r; the quality

of 'the approximation imprcved slightly as the failure rate decreased.

To illustrate the effect of the depot stock level on the quality of

the approximation, we next increased its value. The effect of this

increase is illustrated in Table 6. As the example demonstrates, The

quality of the approximation always improves as the depot stock level

increases.

This experiment has shown that a nonstationary Poisson distribution

provides an excellent approximation to the distribution of the number of

units in resupply at a base ander certain conditions. We believe that

in several respects the test performed was a "worst case" type of test.

There was a substantial initial increase in flying activity per day fol-

lowed by a rapid decline in flying activity, the depot stock level was

low, and the base examined produced half the depot demand. Although we

have obviously performed a limited test, the results indicate that in

realistic situations a nonstationary Poisson distribution can safely be

used to represent the distribution of the number of units in resupply.

-7 -7
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Table 5

COMPARISON OF THE EXACT AND APPROXIMATE
DISTRIBUTIONS OF THE NUMBER OF UNITS IN

BASE RESUPPLY WHEN THE DEPOT STOCK LEVEL
EQUALS THE SMALLEST INTEGER GREATER THAN

OR EQUAL TO THE EXPECTED NUMBER OF
UNITS IN DEPOT RESUPPLY

Probability Distribution

No. of Unite
Day in Base Resupply Approximate Exact

r =.05, p .0001

Day 5 0 .959 .954
1 .040 .045
2 .001 .001

Day 15 0 .960 .953
1 .039 .046
2 .001 .001

Day 30 0 .969 .960
1 .031 .039
2 .001 .001

r =.96, p =.01

Day 5 0 .108 .101
1 .240 .231
2 .267 .266
3 .199 .203
4 .111 .203
5 .049 .054
6 .018 .020

Day 15 0 .182 .020
1 .310 .314

2.264 .263
3 .150 .147
4 .064 .061
5 .022 .020

Day 30 0 .244 .248
1 344 .346
2 i,143 .241
3 .114 .112
4 .040 .039
5 .011 .011

___________r=.5, p=.0001

Day 5 0 .969 .967
1 .030 .032
2 .001 .001

Day 15 0 .972 .970
1 .027 .029
2 .001 .0

Day 30 0 .978 .975
1 022 .025
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Table 6

COMPARISON OF THE EXACT AND APPROXIMATE DISTRIBUTIONS OF
THE NUMBER OF UNITS IN BASE RESUPPLY ON DAY 15

WHEN r =.6 AND p =.002

Depot Stock Level Equals No. of Probability Distribution
the Smallest Integer that Units in --

is Greater Than or Equal to: Base Resupply Approximate Exact

Expected number of units 0 .532 .573
in depot resupply (so = 3) 1 .336 .315

2 .106 .090
3 .022 .018
4 .004 .003

Expected number of units 0 .571 586
in depot resupply plus 1 1 .320 .312
(s o = 4) 2 .090 .084

3 .017 .016

We also observed that the computation time needed to compute the

exact distribution ranged from roughly 500 to 2000 times the amount

needed to calculate the approximate distribution. Considerably less

than a second of CPU time (on an IBM 370/168) was required to compute

the approximate distribution in all cases. Furthermore, many computa-

tional problems (both roundoff and underflow difficulties) frequently

arose during the calculation of the exact distribution. Depending on

the values assumed by the distribution's parameters, different

approaches had to be taken to compute the exact distribution. Because

of the large amount of time nPe.ded to perform these calculations and the

numerical problems that are present, the exact repiesentation of the

probability distribution for the number of units in resupply cannot be

used in studies involving laige numbers of items. It will not be of

practical use in an Air Force requirements computation system for tile

same reasons.

In Ref. 1, Sherbrooke analyzed the same system that we have exam-

ined under the assumption that the demand process is a stationary Pois-

son or compound Poisson process. His development closely parallels the

i.1
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one given in Sec. 1Il. The expression he develops for the distribution

of the number of units in resupply is an approximation. Shanker [7]

compares Sherbrooke's approximation with the exact one that he develops.

He shows that when the depot stock level exceeds the expected number in

the depot repair cycle, Sherbrooke's approximation is quite good. We

note that Sherbrooke's approximation is widely used in practice (for

example, it is the basis for the Air Force's Variable Safety Level

method [6,7]). Based on the comparison we have made and the ones

reported by Shanker, we believe that the approximation developed in Sec.

III is as accurate as the one developed by Sherbrooke.

"I7
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VI. CONCLUDING REMARKS

Our primary objective was to demonstrate that methods are available

that can be easily used to help assess the Air Force's ability to sup-

port its flying mission during a surge in flying activity. Two

approaches were taken to derive, under different sets of assumptions,

the probability distribution of the number of units in resupply at each

location in the two-echelon system at any time t. As was shown, one is

an approximation to this distribution while the other is an exact

representation. Furthermore, we have shown that the approximation is

easily computed and closely approximates the exact distribution; the

exact distribution is computationally intractable and of little practi-

cal value.

To this point our attention has focused on developing these methods

for evaluating supply system performance. There are many potential

applications of these models to the analysis of the effect of transpor-

tation and maintenance policies on supply system performance. However,

we will discuss the principal applications of the nonstationary demand

models in the areas of stock-level determination for spare recoverable

items in a dynamic, short-time-horizon, wartime environment and during

initial provisioning.

Planners are constantly faced with the problem of determining what

amount of inventory should be prepositioned as war readiness stock and

what airlift capabilities should be provided so as to achieve a speci-

fied level of supply effectiveness for a short-time-horizon armed con-

flict. One of the main applications of this nonstationary probability

4
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distribution is to help answer these questions. Since the models meas-

ure the probability of having a specific number of shortages for each

item at any time t for given item stock levels, the stock levels

required to achieve any desired level of supply effectiveness can be

calculated for each item at any point in time. For example, suppose a

required level of supply support is established for a group of items for

each day in the planning horizon. Furthermore, assume that the first

time when additional inventory can be provided from another location--

say, via airlift--is on day nl, the second time on day n2 , and the last

time on day n . Then the time horizon can be subdivided into n + 1

periods whose lengths correspond to the times between successive

arrivals of additional inventory. If we also know the desired supply

support goals for each period, the times at which additional supplies

can arrive, the maximum amount of stock that can be received (or

shipped) in each delivery, and the expected number of parts to be con-

sumed on each day, then we can use nonstationary demand models to estab-

lish the quantity of each item that should be prepositioned and shipped

in each delivery.

Several models can be formulated for calculating the desired

dynamic stock levels. The models can be quite simple or rather complex,

depending on the choice of the objective function and constraints. For

example, if a supply-effectiveness constraint is stated by item, such as

that the fill rate must be at least .8 on each day, and the goal is to

provide the minimum amount of inventory to have on hand each day to meet

this constraint, then the stock levels can be found in a relatively

straightforward manner. If the objective is to minimize inventory
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investment over all items while satisfying constraints on the expected

number of serviceable aircraft available on each day, the problem

becomes much more difficult. Nonetheless, for any choice of objective

function and constraints, the optimal stock levels could be computed for

each item in each period, once the dynamic models have been used to cal-

culate nonstationary distribution of the number of units in resupply at

each location.

Dynamic models can also be used for explicitly examining the impli-

cations of transportation pol~cy--the number and timing of deliveries of

additional inventory--on supply-effectiveness and cost. The amount of

prepositioned stock that is needed can be calculated as a function of

the transportation policy selected. Thus the proper balance between

inventory costs and transportation costs can be established to achieve

any desired level of performance. As a consequence, inventory policy--

for example, for WRSK and BLSS--and transportation policy for supplying

inventory to a theater of war can be established recognizing the

existent interactions.

The current Air Force policy for determining requirements for war

reserve material is stated in AFLCR 57-18 [8]. The methods described in

this regulation for computing stock levels take into account whether an

item has a Remove-and-Replace (RR) or a Remove-Replace-Repair (RRR)

maintenance concept, whether an item is a Line Replaceable Unit (LRU) or

a Shop Replaceable Unit (SRU), and whether the unit is primarily

repaired at a base or a depot, For example, the formula for computing

the stock level for an LRU that is repaired primarily at a base follow-

ing an RRR maintenance concept is:
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Quantity = DR x QPA x FH + BRR x BRC x QPA,

where

DR = total demand rate at a base for an item
(demands per 100 flying hours),

QPA = number of units of the item on an aircraft,

FH = flying hours (in hundreds of hours) in the
period of time in which the item's repair
facility is being set up,

BRR = expected number of base level repairs (in
hundreds of flying hours), and

BRC = flying hours (in hundreds of hours) occurring
during a base repair cycle.

Observe that the stock level is computed using an expected-value

type of calculation. No attempt is made to take the uncertainty of

demand into account. Potential supply performance on each day cannot

easily be determined using the current Air Force methodology. Note that

the choice of the BRC factor affects the stock level significantly.

There is no guarantee that the proper action is to set BRC so that the

term BRR x BRC x QPA is as large as possible. Because this peak

requirement may occur for only a small fraction of the planning horizon,

a large investment in the item may be undesirable. In fact, it is

impossible to ascertain what value BRC should assume without performing

the type of analysis discussed in Secs. III and IV. Furthermore, the

interaction between the depot and bases is ignored entirely in these

calculations. In short, the current policy has some serious defects.

The inadequacy of the present policy has been recognized by Air

Force planners. As a result, a revision to AFLCR 57-18 is being
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prepared which these planners believe will address iLs major deficien-

cies. The following is a brief description of the revised method Vt]

Stock levels are first calculated for each item using the present

Air Force technique. These stock levels are made as large as possible

by finding the period during which the expected number of units in ba<e

resupply is at its, maximum. For example, for an LRU repaired primarily

at a base using an RRR maintenance concept, the stock level is maximized

by selecting the period during which the BRC factor is the largest.

This resulting quantity can be further adjusted by multiplying it by a

factor to yield some safety stock.

Using these stock levels, the expected number of backorders and the

expected number of serviceable aircraft are computed. These performance

measures are calculated under the assumption that the number of units in

base resupply for each item is Poisson diatributed. The mean of this

distribution is assumed to be equal to the maximum expected number of

units in resupply during the planning horizon. Once the expected per-

formance levels have been determined, a heuristic, which is a gradient

type of proceplure, is used to find new values for the stock levels.

These stock levels arf, s.lertad in the hope of achieving these two per-

formance levels at minimum cost.

There are drawbacks to the revision of the current Air Force method

for computing war readiness stocks that we have discussed. First, it

does not consider the dynamic nature of the problem. Setting the mean

of the Poisson distribution describing the number of units in base -e-

supply to its largest value over the planning horizon makes the dynamic

problem appear to be static. It is unknown whether the maximum mean
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occurs for a significant fraction or a very small fraction of the plan-

ning horizon. The differences between the maximum and minimum values of

the mean are not considered. The actual mean value of the Poisson dis-

tribution over the planning horizon should be used in setting stock lev-

els. Otherwise, serious errors can occur when setting item stock lev-

els. Furthermore, the system's dynamic performance cannot be readily

examined.

A second drawback is that the revised method does not accurately

take into account the effect of depot stock on base level performance.

Consequently, it cannot very easily analyze the complex interactions

between depot stock levels and expected base level performance.

Finally, the revised method makes it difficult to measure the

effect of transportation policy. This occurs because daily fluctuations

in expected performance are not considered in the optimization pro-

cedure.

The last model we will discuss is the one used by the Air Force to

compute spare aircraft engine requirements for a wartime environment

[2,31. It is a stationary model. The daily demand rate at a location

is increased to reflect the average daily flying activity there over the

planning horizon. Using this average daily demand rate, the stock lev-

els are computed separately for each location, thereby ignoring any

depot-base interactions. Some of the pitfalls of using this model for

determining wartime stock levels are illustrated in the example

presented in Sec. II. As shown in that example, this approach makes it

impossible to evaluate the dynamic behavior of the system. It also

assumes that the output rates of the base and depot repair processes

* ,. - -. . ;.
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immediately following the increase in flying activity instantaneously

equal the wartime rates--an impossibility, since at best the output rate

at time t from base maintenance must correspond to the input rate at

time t minus the base repair time, B, that is, at time t-B. But the

input rate at time t-B would most likely be considerably less than the

input rate at time t. Thus the resupply rate during the critical early

portion of a short war will most likely be overstated.

The models we have briefly discussed, and others like them, for

computing item stock levels based on a nonstationary representation of

the demand process would use primarily the same planning data that are

required by current techniques, but would use these data more effec-

tively. Consequently, the data needed are simply the dynamic base and

depot repair times, NRTS rates, flying schedules, failure rates, and the

transportation policy. Rather than aggregating flying and failure data

over the planned horizon, we can obtain more precise estimates of the

inventory requirements and supply effectiveness throughout the horizon

by using the projected daily flying activity.

In addition to the application we have discussed, dynamic models

can also be used effectively during the initial provisioning process to

determine both when inventory should be aocdo t thb 'ystem and how much

inventory is needed at each point in time to achieve a desired level of

supply support. The initial provisioning techniques currently used by

the Air Force are steady-state approaches. For example, the standard

method for computing requirements is described in AFLCR 57-27 [10]. It

is a simple deterministic model in which both the peak and average daily

flying programs are used to forecast demand, and hence requirements, for
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each item. This forecasted demand is implicitly assumed to occur uni-

formly at a constant rate during a year, even though demand is random

and the rate changes dramatically as additional aircraft are placed into

service. For basically the same reasons that we have already discussed,

this model inadequately addresses the dynamics of the demand process for

recoverable items of a new system over a period of time. Hence, it

gives an inaccurate portrayal of both expected supply support (such as

NMCS rates, fill rates, backorders, etc.) and inventory requirements.

This is illustrated in the following example.

Suppose a new aircraft system is introduced into the Air Force over

a two-year period. Furthermore, suppose the solid line in Fig. 4 is the

graph of the expeited number of units in resupply in the system at each

point in time throughout the two-year horizon. The dashed lines

represent the number of units in resupply in the system assumed by the

AFLCR 57-27 model. Since the average number of units in resupply deter-

mines the stockage requirements, excess inventories will be on hand for

certain portions of the two-year period, while at other times the system

will experience severe shortages. This, of course, makes the planned

flying program extremely difficult to achieve.

0
E

01 2 3 4
Time (in years)

Fig. 4-Expected number of units in resupply in the system



-46-

Rather than using a stationary model to describe demand during the

provisioning process, dynamic models like the one developed in Sec. III

can be used. The data required include the aircraft delivery and flying

schedules, base and depot repair times, NRTS rates, failure rates, and

order-and-ship-times. The only difference in data requirements is that

the expected demand rate has to be expressed as a function of time. But

this can be easily done using a computer. Once this nonstationary

representation of the demand process is available, a model can be used

to ascertain the optimal delivery schedule of spares for each item.

A model could be developed that determines the stocks that should

be delivered so that the total cost of spares procurement is minimized

subject to aggregate supply effectiveness constraints 'or each period (a

month or quarter) of the initial provisioning planning rizon. The

cost could represent the discounted cost of purch ,ing s, .ren over the

planning horizon. Each constraint could, for example, esthblish a max-

imum expected number of shortage days that would be al'owed during a

specific time period. Thus, the effect of different support goali for

different periods could be explicitly examined using the model, and the

effect on procurement cost could be measured directly.
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